go to my world

Wellcome to my world

Senin, 23 Mei 2011

Analisa sperma


PEMERIKSAAN PARAMETER SPERMA

Parameter-parameter sperma dapat dinyatakan secara :
1. Kuantitatif, misalnya volume, jumlah spermatozoa/ml, kadar fruktosa.
2. Semi kuantitatif, misalnya viskositas sperma, motilitas spermatozoa.
3. Kuantitatif, misalnya bau dan warna sperma.
Yang akan dibahas berikut adalah pemeriksaan parameter-parameter sperma pada analisa sperma dasar (rutin).
Analisis sperma dasar dilakukan menurut tahapan sebagai berikut :

1. Pemeriksaan makroskopis.
Segera setelah sperma diejakulasikan, hendaknya diamati dalam wadah penampung :
1. Ada/tidaknya koagulum
2. Warna sperma
3. Bau sperma
4. Proses likuefaksi sperma
Setelah proses likuefaksi selesai, ditentukan parameter sebagai berikut :
1. Volume sperma
2. pH sperma
3. Kekerasan dan warna sperma
4. Viskositas sperma

2. Pemeriksaan mikroskopis
Pemeriksaan mikroskopis dilakukan setelah proses likuefaksi selesai.
Pemeriksaan ini meliputi :
1. Pergerakan spermatozoa
2. Kepadatan spermatozoa
3. Morfologi spermatozoa
4. Ada/tidaknya aglutinasi spermatozoa
5. Adanya sel bundar (Round cells)
6. Mikroorganisme
7. Partikel lepasan dan kristal

INTERPRETASI SPERMIOGRAM
Interprestasi spermiogram sampai saat ini adalah berdasarkan pada 3 parameter pokok, yakni : 1. Jumlah spermatozoa/ml
2. Persentase spermatozoa motil
3. Persentase spermatozoa berbentuk normal
Dengan perkataan lain, penilaian dititik beratkan pada spermatozoa. Walaupun demikian, parameter-parameter sperma yang lain tidak selalu dapat kita abaikan nilainya. Misalnya sperma yang tidak mengandung spermatozoa dengan volume kecil dan pH asam, memberikan dugaan suatu kelainan konginital tertentu dari sistem reproduksi pria.
Jumlah spermatozoa/ml
Jumlah spermatozoa/ml yang menjadi pegangan untuk dikatakan cukup, kurang ataupun berlebih adalah 20 juta/ml. Istilah yang dipakai adalah sbb :
0 Juta/ml disebut Azoospermia
> 0 - 5 Juta/ml disebut Ekstrimoligozoospermia
< 20 juta disebut oligozoospermia
> 250 Juta/ml disebut Polizoospermia
Jumlah spermatozoa 20 – 250 juta/ml sudah dianggap masuk dalam batas-batas yang normal.

PROSENTASE SPERMATOZOA MOTIL
Kualitas pergerakan spermatozoa disebut baik bila 50% atau lebih spermatozoa menunjukkan pergerakan yang sebagian besar adalah gerak yang cukup baik atau sangat baik (grade II/III). Gradasi menurut W.H.O. untuk pergerakan spermatozoa adalah sebagai berikut :
0 = spermatozoa tidak menunjukkan pergerakan
1 = spermatozoa bergerak ke depan dengan lambat
2 = spermatozoa bergerak ke depan dengan cepat
3 = spermatozoa bergerak ke depan sangat cepat
Bila spermatozoa yang motil kurang dari 50%, maka spermatozoa disebut astenik. Istilah yang digunakan adalah Astenozoospermia.

PERSENTASE MORFOLOGI NORMAL
Spermatozoa disebut mempunyai kualitas bentuk yang cukup baik bila ≥ 50% spermatozoa mempunyai morfologi normal. Pemeriksaan morfologi men-cakup bagian kepala, leher dan ekor dari spermatozoa.
Bila > 50% spermatozoa mempunyai morfologi abnormal, maka keadaan ini di sebut teratozoospermia.
Dengan pegangan ketiga parameter pokok tersebut di atas, maka didapat kesan atau “diagnosis” spermatologis dalam istilah-istilah sbb :
  • Normozoospermia
  • Oligozoospermia
  • Extrimoligozoospermia
  • Astenozoospermia
  • Ekstrimoligoastenozoospermia
  • Oligoastenozoospermia
  • Oligoastenoteratozoospermia
  • Astenoteratozoospermia
  • Poliastenozoospermia
  • Azoospermia
Parameter sperma yang lainnya juga mempunyai nilai informatif untuk penilaian fungsi kelenjar Seks asesori pria, sehingga perlu dicantumkan dalam spermiogram. Parameter-parameter tersebut adalah :
1. Volume : Umumnya 2 – 4 ml.
2. Warna : Lazimnya putih keabuan agak keruh, atau sedikit kekuningan.
3. Bau : Khas spesifik sperma, atau “langu”
4. pH : 7.2 – 7.7
5. Koagulum : Normal terdapat sesaat setelah sperma diejakulasi dan tidak tampak lagi setelah 20 menit, oleh karena proses likwefaksi telah selesai.
Bila proses likuefaksi belum selesai/sempurna dalam waktu 20 menit, kita sebut waktu likuefaksi memanjang.
6. Viskositas : - Normal : waktu tetesan 1 – 2 detik
7. Aqlutinasi : - Normal : tidak terdapat aqlutinasi sejati.
8. Lekosit : - sebagai batasan, sperma normal tidak mengandung lekosit lebih dari satu juta/ml. Sperma yang mengandung lebih dari 1 juta lekosit per ml disebut sebagai sperma yang mengalami pencemaran. (tfk file)








Jumat, 20 Mei 2011

Hiponatremia

Hiponatremia

Pendahuluan:

Ion Natrium (Na+) merupakan kation utama di cairan ekstraseluler (plasma dan interstisial). Kadar normal dalam serum adalah 135 -145 mmol/L. Na+ berperan penting dalam pengaturan osmolaritas plasma. Kadar yang terlalu rendah atau terlalu tinggi bisa mempengaruhi fungsi otak. Sebagai contoh, hiponatremia berat (< 115 mmol/L) berpotensi menimbulkan gangguan neurologis, seperti penurunan kesadaran sampai coma dan kejang. Seringkali klinisi terjebak untuk menangani hiponatremia dengan cara terlalu agresif, sehingga justru menyebabkan penyulit dan kematian.

Beberapa poin penting yang perlu diketahui sebelum melakukan terapi cairan koreksi untuk hiponatremia:
  • Tidak ada konsensus tentang tatalaksana hiponatremia.
  • Gejala ringan bisanya bisa ditanggulangi dengan restriksi air.
  • Gejala berat (misal, kejang atau coma) -----NaCl hipertonik (NaCl 3% yang mengandung 513 mmol Na+ per L)
  • Kebanyakan pasien hiponatremia yang disertai hipovolemia atau gangguan hemodinamik bisa diatasi dg Normal Saline (mengandung 154 mmol Na+/L)
  • Kejang bisa dihentikan cepat dengan menaikkan Na+ serum hanya 3 sampai 7 mmol/L.
  • Kebanyakan komplikasi demielinisasi terjadi bila laju koreksi melebihi 12 mmol/L/24 jam.
  • Pernah juga dilaporkan mielinolisis serebropontin pada laju peningkatan kadar Na+ serum 9 sampai 10 mmol/L dalam 24 jam atau 19 mmol dalam 48 jam.
  • Rekomendasi : laju koreksi < 8 mmol/L/24 jam.
  • Namun koreksi awal 1 -2 mmol/L/jam untuk beberapa jam pertama pada kasus berat.
  • Indikasi menghentikan koreksi akut dari gejala adalah berhentinya manifestasi yang mengancam jiwa atau kadar serum sudah mencapai 125 atau 130 mmol/L, bahkan sebelum mencapai kadar tersebut jika kadar semua (baseline) di bawah 100 mmol/L

CARA KOREKSI:
  • Tanpa memandang etiologi, hiponatremia berat hatrus dikoreksi dengan NaCl hipertonik (NaCl 3%) jika ada gejala neurologis, seperti penurunan kesadaran dan kejang. Tidak ada alasan kuat untuk memberikan NaCl 3% pad apasien hiponatremia simatomatik (kadar di atas 125 mEq). Pada prinsipnya, 1 liter larutan yang mengandung natrium bisa meningkatkan atau nmenurunkan kadar natrium plasma
  • Besarnya perubahan kadar Na+ plasma bisa dihitung dengan rumus:

Na+ infus  –  Na+ serum
   Air tubuh total  +  1
 
  • Air tubuh total pada dewasa = 60% berat badan, sedangkan pada anak 70% berat badan

ILUSTRASI KASUS:

Wanita usia 30 tahun mengalami kejang grandmal 3 kali, dua hari setelah apendektomi.
Paisen diberikan 20 mg diazepam dan 250 mg fenitoin iV dan dipasang intubasi laring dengan ventilasi mekanik. Allo-anamnesis ke perawat mengungkap pasien diberi 2 liter D5 dan 1 liter RL dalam 24 jam pertama setelah operasi, dan setelah itu dibolehkan minum
Klinik: pasien tidak dehidrasi dan BB 46 kg. stupor dan hanya respon ke nyeri tetapi tidak terhadap perintah. Lab: Na+ serum 112 mmol/L, osmolalitas serum 228 mOsm/kg, osmolalitas urin 510 mOsm/kg WD/ hiponatremia hipotonik karena retensi air.

Direncanakan koreksi Na+ dalam 5 jam pertama menjadi 117 mmol/L dengan harapan kejang menghilang, dan sesudah itu rencana dilanjutkan dengan menaikan 5 mmol/L untuk 19-20 jam kemudian. Berapa jumlah dan kecepatan infus NaCl 3% yang dianjurkan?

Na+ infus  –  Na+ serum                       =          513   –  112  
  Air tubuh total  +  1                           60%BB + 1

         401                                            =          401                              =          14.02
(60% x 46) + 1                                               28.6

Artinya 1 L NaCl 0.3% akan meningkatkan kadar Na+ plasma ~ 14 mmol/L
Dalam 5 jam pertama diperlukan hanya menaikkan kadar Na+ sebesar 5 mmol/L, berarti hanya dibutuhkan: 5 : 14 = + 0.357 L NaCl 3% atau 357 ml. Jadi laju pemberian adalah 357: 5 = + 72 ml per jam atau 18 tetes per menit (jika menggunakan set infus Otsuka ). Setelah 5 jam, kadar Na+ naik menjadi 117 mmol/L. kejang hilang pasien masih somnolen, berikutnya direncanakan menaikkan 5 mmol dalam waktu 19-20 jam. Laju pemberian adalah 357 : 19 = ~ 18 ml/jam. Biasanya pemberian infus demikian lambat memerlukan infusion pump. Dan kebutuhan maintenance 20 jam bisa diberikan Normal saline. NaCl 3% tidak diteruskan setelah Na+ plasma mencapai 125 atau 130 mmol/L. Klinisi bisa menentukan sendiri berapa kadar Na+ yang dikehendaki setelah waktu tertentu (tidak ada konsensus) dan bisa saja memodifikasi sesuai respons. Yang terpenting adalah koreksi dilakukan tidak terlalu cepat.

Referensi :
Adrogue, HJ; and Madias, NE. Primary Care: Hyponatremia. New England Journal of Medicine 2000; 342(21):1581-1589..



Symptoms of Low Sodium & Too Much Water

 

Overview

Sodium is the major electrolyte in the blood. It is used for blood volume control and to transmit impulses for nerve and muscle stimulation. The body tightly regulates the balance of sodium, as too much or little can be deadly. Too little sodium or excess water outside the cells is called hyponatremia. Conditions where this can happen include serious burns, cancer, congestive heart failure, excessive water intake during exercise, kidney disease and liver cirrhosis.

 

Brain Function

The brain is sensitive to changes in sodium levels. The elderly population can be susceptible to hyponatremia. General confusion can be a symptom of low sodium, and brain function can deteriorate to include hallucinations, decreased consciousness or even a coma in extreme instances.

 

Nausea

Nausea or loss of appetite is a symptom of hyponatremia. Vomiting may also occur. Severe vomiting and diarrhea cause loss of water and electrolytes like sodium, and may trigger hyponatremia or make it worse.

Muscle Problems

Feelings of weakness or lethargy may be present as a symptom of hyponatremia. Muscle spasms, cramps or possibly seizures may occur because of low sodium. Sodium helps regulate muscle contractions, so that is why hyponatremia may result in muscle weakness or spasms when there is not enough sodium in the body fluid to stimulate proper muscle contraction.

 

Treatment

Call a health care professional if symptoms of hyponatremia are present, as treatment includes diagnosis of hyponatremia from a health care professional. Treatments may include intravenous fluids, medications or water restriction. Recovery time depends on the severity and how quickly the hyponatremia came on. Hyponatremia that has occurred in a few days or less is typically more severe than chronic hyponatremia because the brain has time to adjust to the sodium level changes.



 Hyponatremia 

 

Definition

The normal concentration of sodium in the blood plasma is 136-145 mM. Hyponatremia occurs when sodium falls below 130 mM. Plasma sodium levels of 125 mM or less are dangerous and can result in seizures and coma.

 

Description

Sodium is an atom, or ion, that carries a single positive charge. The sodium ion may be abbreviated as Na+ or as simply Na. Sodium can occur as a salt in a crystalline solid. Sodium chloride (NaCl), sodium phosphate (Na2HPO4) and sodium bicarbonate (NaHCO3) are commonly occurring salts. These salts can be dissolved in water or in juices of various foods. Dissolving involves the complete separation of ions, such as sodium and chloride in common table salt (NaCl).
About 40% of the body's sodium is contained in bone. Approximately 2-5% occurs within organs and cells and the remaining 55% is in blood plasma and other extracellular fluids. The amount of sodium in blood plasma is typically 140 mM, a much higher amount than is found in intracellular sodium (about 5 mM). This asymmetric distribution of sodium ions is essential for human life. It makes possible proper nerve conduction, the passage of various nutrients into cells, and the maintenance of blood pressure.
The body continually regulates its handling of sodium. When dietary sodium is too high or low, the intestines and kidneys respond to adjust concentrations to normal. During the course of a day, the intestines absorb dietary sodium while the kidneys excrete a nearly equal amount of sodium into the urine. If a low sodium diet is consumed, the intestines increase their efficiency of sodium absorption, and the kidneys reduce its release into urine.
The concentration of sodium in the blood plasma depends on two things: the total amount of sodium and water in arteries, veins, and capillaries (the circulatory system). The body uses separate mechanisms to regulate sodium and water, but they work together to correct blood pressure when it is too high or too low. Too low a concentration of sodium, or hyponatremia, can be corrected either by increasing sodium or by decreasing body water. The existence of separate mechanisms that regulate sodium concentration account for the fact that there are numerous diseases that can cause hyponatremia, including diseases of the kidney, pituitary gland, and hypothalamus.

 

Causes and symptoms

Hyponatremia can be caused by abnormal consumption or excretion of dietary sodium or water and by diseases that impair the body's ability to regulate them. Maintenance of a low salt diet for many months or excessive sweat loss during a race on a hot day can present a challenge to the body to conserve adequate sodium levels. While these conditions alone are not likely to cause hyponatremia, it can occur under special circumstances. For example, hyponatremia often occurs in patients taking diuretic drugs who maintain a low sodium diet. This is especially of concern in elderly patients, who have a reduced ability to regulate the concentrations of various nutrients in the bloodstream. Diuretic drugs that frequently cause hyponatremia include furosemide (Lasix), bumetanide (Bumex), and most commonly, the thiazides. Diuretics enhance the excretion of sodium into the urine, with the goal of correcting high blood pressure. However, too much sodium excretion can result in hyponatremia. Usually only mild hyponatremia occurs in patients taking diuretics, but when combined with a low sodium diet or with the excessive drinking of water, severe hyponatremia can develop.
Severe and prolonged diarrhea can also cause hyponatremia. Severe diarrhea, causing the daily output of 8-10 liters of fluid from the large intestines, results in the loss of large amounts of water, sodium, and various nutrients. Some diarrheal diseases release particularly large quantities of sodium and are therefore most likely to cause hyponatremia.
Drinking excess water sometimes causes hyponatremia, because the absorption of water into the bloodstream can dilute the sodium in the blood. This cause of hyponatremia is rare, but has been found in psychotic patients who compulsively drink more than 20 liters of water per day. Excessive drinking of beer, which is mainly water and low in sodium, can also produce hyponatremia when combined with a poor diet.
Marathon running, under certain conditions, leads to hyponatremia. Races of 25-50 miles can result in the loss of great quantities (8 to 10 liters) of sweat, which contains both sodium and water. Studies show that about 30% of marathon runners experience mild hyponatremia during a race. But runners who consume only pure water during a race can develop severe hyponatremia because the drinking water dilutes the sodium in the bloodstream. Such runners may experience neurological disorders as a result of the severe hyponatremia and require emergency treatment.
Hyponatremia also develops from disorders in organs that control the body's regulation of sodium or water. The adrenal gland secretes a hormone called aldosterone that travels to the kidney, where it causes the kidney to retain sodium by not excreting it into the urine. Addison's disease causes hyponatremia as a result of low levels of aldosterone due to damage to the adrenal gland. The hypothalamus and pituitary gland are also involved in sodium regulation by making and releasing vasopressin, known as anti-diuretic hormone, into the bloodstream. Like aldosterone, vasopressin acts in the kidney, but it causes it to reduce the amount of water released into urine. With more vasopressin production, the body conserves water, resulting in a lower concentration of plasma sodium. Certain types of cancer cells produce vasopressin, leading to hyponatremia.
Symptoms of moderate hyponatremia include tiredness, disorientation, headache, muscle cramps, and nausea. Severe hyponatremia can lead to seizures and coma. These neurological symptoms are thought to result from the movement of water into brain cells, causing them to swell and disrupt their functioning.
In most cases of hyponatremia, doctors are primarily concerned with discovering the underlying disease causing the decline in plasma sodium levels. Death that occurs during hyponatremia is usually due to other features of the disease rather than to the hyponatremia itself.

 

Diagnosis

Hyponatremia is diagnosed by acquiring a blood sample, preparing plasma, and using a sodium-sensitive electrode for measuring the concentration of sodium ions. Unless the cause is obvious, a variety of tests are subsequently run to determine if sodium was lost from the urine, diarrhea, or from vomiting. Tests are also used to determine abnormalities in aldosterone or vasopressin levels. The patient's diet and use of diuretics must also be considered.

plasenta grading

http://www.learningradiology.com/notes/bonenotes/webbanner6new.jpg

 
Placenta-Grading
Submitted by Tara Herzberg, MD

  • Vascularity
    • Very vascular – has 2 blood supplies
      • Blood from fetus through 2 (sometimes 1) umbilical arteries through umbilical cord from fetal hypogastric arteries to placenta
      • 1 umbilical vein carries blood back to fetal left portal vein
      • Blood from mom through branches of uterine arteries through the myometrium (arcuate arteries) through the basilar plate (spiral arteries) into the placenta
  • The two circulations intertwine in the placenta but do not mix
    • Exchange of oxygen and nutrients occurs over the large vascular surface area
    • Maternal venous channels in the placenta are hypoechoic or anechoic spaces called venous lakes (usually small, but can be large)
  • Anatomy on US
    • Inner border of placenta against the uterine wall has the combined hypoechoic myometrium and interposed basilar layer = hypoechoic band called the decidua basalis (contains maternal blood vessels)
    • Outer surface abutting the amniotic fluid = chorionic plate (chorioamniotic membrane) = bright specular reflector
  • Placental thickness judged subjectively
    • But if measure at midposition or cord insertion 2-4 cm = normal
http://www.learningradiology.com/images/guimages/grade0placenta.jpg
Grade 0
·   Late 1st trimester-early 2nd trimester
·   Uniform moderate echogenicity
·   Smooth chorionic plate without indentations


http://www.learningradiology.com/images/guimages/grade1placenta.jpg
Grade 1
·   Mid 2nd trimester –early 3rd trimester (~18-29 wks)
·   Subtle indentations of chorionic plate
·   Small, diffuse calcifications (hyperechoic) randomly dispersed in placenta
http://www.learningradiology.com/images/guimages/grade2placenta.jpg
Grade 2
·   Late 3rd trimester (~30 wks to delivery)
·   Larger indentations along chorionic plate
·   Larger calcifications in a “dot-dash” configuration along the basilar plate
http://www.learningradiology.com/images/guimages/grade3placenta.jpg
Grade 3
·   39 wks – post dates
·   Complete indentations of chorionic plate through to the basilar plate creating “cotyledons” (portions of placenta separated by the indentations)
·   More irregular calcifications with significant shadowing
·   May signify placental dysmaturity which can cause IUGR
·   Associated with smoking, chronic hypertension, SLE, diabetes
Rumack
The Requisites-GU Radiology
Copyright © 2005 LearningRadiology.com